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Abstract

In this project we study and implement software to reconstruct images in the spatial domain
from non-uniformly sampled data in the spectral domain. We study existing non-uniform fast
Fourier methods and understand their use in image reconstruction. Also, we fit one of these
methods to a technique previously developed to reconstruct images from uniformly sampled
spectral data. In this project we also create a database of synthetic non-uniform spectral data
to test the algorithms developed herein. We deliver Matlab code that implements the techniques
described in this document, and explore C and/or C++ code that parallelizes these algorithms.

1 Introduction

In many scientific and engineering disciplines, the use of Fourier techniques to process data is
pervasive and fundamental. With the advent of computers in the 1960s, the algorithm nowadays
known as the Fast Fourier Transform (FFT), first discovered by Karl Friedrich Gauss in 1805,
and later rediscovered by James W. Cooley and John W. Tukey in 1965 [3, 4], has become a
workhorse for all sorts of applications.

The FFT, which computes discrete Fourier transforms (DFTs), is notably used in areas
of spectral analysis and signal processing. However, numerous applications involve unevenly
spaced data, whereas the FFT requires that input data be tabulated on a uniform grid [5].

For example, the Magnetic Resonance Imaging (MRI) technique generates spectral data in
a non-uniform grid; and from this data, an image is to be produced. For this project, we are
interested in studying the techniques that make this possible, and study how they are related to
the FFT. In particular, we are interested in techniques to reconstruct images from non-uniformly
sampled spectral data.

2 Images and their Fourier transform

As we mentioned in the introduction, we are interested in algorithms that reconstruct im-
ages from non-uniform spectral data. For example, some MRI machines produce spectral data
mapped onto interleaving spirals [2]. As mentioned above briefly, the standard FFT algorithm
requires evenly spaced data as its input. How is one to reconstruct spatial data from non-uniform
spectral data?
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2.1 What is an image?

We will adopt the following model for a black and white image. Suppose you have a square
image of N by N pixels, and we will think of it as a patchwork of square tiles of unit area 1,
each colored with a different tone of gray. See, for example, figure 1.

Figure 1: An image represented by the sum of step wise functions.

In this case, our image is a 16 by 16 square with a grayscale of 256 total different values
graded from 0, the blackest; to 1, the brightest.

We have then that an image can be represented by a function f = f(x, y) in the Cartesian
plane R2 as:

f(x, y) =
∑
k,l

fk,lχk,l(x, y), (1)

where k, l ∈ {0, . . . , N − 1}, fk,l ∈ R, and χk,l(x, y) is the characteristic function of the square
�k,l = [k, k + 1)× [l, l + 1); that is,

χk,l =
{

1 if (x, y) ∈ �k,l,
0 otherwise. (2)

2.2 Fourier transform of an image

We can define the Fourier transform of an image f = f(x, y) in the following way:

f̂(σ, γ) =
∫

R2
f(x, y)e−2πi(xσ+yγ)dxdy. (3)

If we consider functions f as defined in 2.1, we then obtain
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f̂(σ, γ) =
∫

R2

∑
k,l

fk,lχk,l(x, y)e−2πi(xσ+yγ)dxdy

=
∑
k,l

∫
R2
fk,lχk,l(x, y)e−2πi(xσ+yγ)dxdy

=
∑
k,l

∫ l+1

l

∫ k+1

k

fk,le
−2πi(xσ+yγ)dxdy

=
∑
k,l

fk,l

∫ k+1

k

e−2πixσdx

∫ l+1

l

e−2πiyγdy, (4)

with k, l ∈ {0, . . . , N − 1}, for an N by N image. We pause for a moment, and introduce the
rectangle function Π defined as follows,

Π(x) =


1 if |x| < 1

2 ,

1
2 if |x| = 1

2 ,

0 if |x| > 1
2 .

(5)

Figure 2: Graph of the rectangle function Π.

Lets compute Π̂ as this will help simplify further equation 4:
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Π̂(γ) =
∫ ∞
−∞

Π(x)e−2πixγdx

=
∫ 1

2

− 1
2

e−2πixγdx (6)

=
1

−2πiγ
e−2πixγ

∣∣∣ 12
x=− 1

2

=
1

−2πiγ
(
e−πiγ − eπiγ

)
=

sin(πγ)
πγ

:= sincπ(γ). (7)

Note that the right hand side of equation 6 is remarkably similar to both integrals in the
right hand side of equation 4. In fact they are identical modulo a translation by k + 1

2 and
l+ 1

2 in x and y respectively. This is not surprising as we are dealing with the multiplication of
translates of the rectangle function.

Here is where we can introduce and verify the following well known fact of the Fourier
transform. If f(x)↔ f̂(γ), then f(x−a)↔ e−2πiaγ f̂(γ). Coming back to equation 4 we obtain:

f̂(σ, γ) =
∑
k,l

fk,l

∫ k+1

k

e−2πixσdx

∫ l+1

l

e−2πiyγdy

=
∑
k,l

fk,l

∫ 1
2

− 1
2

e−2πi(x′+k+ 1
2 )σdx′

∫ 1
2

− 1
2

e−2πi(y′+l+ 1
2 )γdy′

=
∑
k,l

fk,l

(
e−2πi(k+ 1

2 )σ

∫ 1
2

− 1
2

e−2πix′σdx′
)(
e−2πi(l+ 1

2 )γ

∫ 1
2

− 1
2

e−2πiy′γdy′
)

=
∑
k,l

fk,le
−2πi(k+ 1

2 )σsincπ(σ)e−2πi(l+ 1
2 )γsincπ(γ). (8)

Summarizing our results from this section, we then have that if

f(x, y) =
∑
k,l

fk,lχk,l(x, y), (9)

then

f̂(σ, γ) =
∑
k,l

fk,le
−2πi(k+ 1

2 )σsincπ(σ)e−2πi(l+ 1
2 )γsincπ(γ)

=
(∑
k,l

fk,le
−2πikσe−2πilγ

)
e−iπ(σ+γ)sincπ(σ)sincπ(γ), (10)

where k, l ∈ {0, . . . , N − 1}, fk,l ∈ R, χk,l(x, y) is the characteristic function of the square
�k,l = [k, k + 1)× [l, l + 1), and sincπ is as defined in equation 7.

Observing that when m,n ∈ Z

e−2πik(σ+m)e−2πil(γ+n) = e−2πikσe−2πilγ , (11)

and
e−πi(σ+m+γ+n) = e−πi(σ+γ)(−1)m+n, (12)

we obtain from equation 10 that the quotient
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f̂(σ +m, γ + n)

f̂(σ, γ)
= (−1)m+n sincπ(σ +m)sincπ(γ + n)

sincπ(σ)sincπ(γ)
, (13)

or, equivalently,

f̂(σ +m, γ + n) = (−1)m+n sincπ(σ +m)sincπ(γ + n)
sincπ(σ)sincπ(γ)

f̂(σ, γ). (14)

Therefore, f̂(σ+m, γ+n)/f̂(σ, γ) is independent of the values {fk,l}, and knowing f̂ in the
unit square [0, 1)× [0, 1) ⊂ R̂2 determines the value of f̂ in all of R̂2, i.e., we only need to know
what goes on in the unit square to know what goes on in all the plane.

3 Theory for solution to the image reconstruction problem

Let us revisit the definition of an image from section 2.1. We had established that we could
think of a black and white image as the sum of piecewise constant functions, as described in
equation 1.

Lets relabel the square tiles that make the image in a new alphabetical order, and rewrite f
using this new index, say

f(x, y) =
∑
j

fjχj(x, y), (15)

where this new alphabetical ordering imposes a natural bijection j 7→ (kj , lj) = (k, l), where
fj = fk,l and χj = χk,l, for some k, l ∈ {0, . . . , N − 1} as before; and j ∈ {0, . . . N2 − 1}. Using
this notation, we can also rewrite the Fourier transform of f as

f̂(σ, γ) =
∑
j

fje
−2πi(kj+

1
2 )σsincπ(σ)e−2πi(lj+

1
2 )γsincπ(γ), (16)

or, equivalently,

f̂(σ, γ) =
(∑

j

fje
−2πikjσe−2πiljγ

)
e−iπ(σ+γ)sincπ(σ)sincπ(γ). (17)

If we call for simplicity

aj(σ, γ) = e−2πikjσe−2πiljγe−iπ(σ+γ)sincπ(σ)sincπ(γ), (18)

then we can write equation 16 as

f̂(σ, γ) =
∑
j

fjaj(σ, γ). (19)

Now assume that we have an image g ∈ L(R2) = {f : R2 → R :
∫

R2 |f(x, y)|dxdy < ∞}1
with Fourier transform ĝ. Assume that we have sampled in the spectral domain M values of ĝ
at {(σi, γi) ∈ R̂2 : i = 0, . . . ,M − 1}, say ĝ(σi, γi) = bi.

If we would like to reconstruct g from this data with a piecewise constant function f at a
resolution of N by N pixels, we should satisfy —using equation 19— the following equality for
all i ∈ {0, . . . ,M − 1}:

f̂(σi, γi) =
N2−1∑
j=0

fjaj(σi, γi) = bi. (20)

In matrix notation, this is equivalent to writing

1This condition guarantees that ĝ(σ, γ) =
R R

g(x, y)e−2πi(xσ+yγ)dxdy exists.
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a0(σ0, γ0) a1(σ0, γ0) . . . aN2−1(σ0, γ0)
a0(σ1, γ1) a1(σ1, γ1) . . . aN2−1(σ1, γ1)

...
...

...
a0(σM−1, γM−1) a1(σM−1, γM−1) . . . aN2−1(σM−1, γM−1)




f0
f1
...

fN2−1

 =


b0
b1
...

bM−1


(21)

or, equivalently,

Af = b, (22)

where A is the M by N2 matrix that captures the geometry of the sampled points in the spectral
domain, f is the N2 by 1 vector of the reconstruction image coefficients, and b is the M by 1
vector of spectral data values sampled at the geometric locations coded into A.

If we had M = N2, the image reconstruction problem would boil down to solving the linear
system of equations 22. However, we will most likely have M ≥ N2, and system 22 will be
overdetermined.

In this case, we proceed by premultiplying equation 22 by A∗, the conjugate transpose of
A. The linear system of equations then becomes

(A∗A)f = A∗b. (23)

Since A∗A is clearly Hermitian, and every Hermitian matrix is also normal, the finite-
dimensional spectral theorem applies. This gives that A∗A = QDQ∗ for some unitary matrix
Q, and some real diagonal matrix D = diag(λ1, . . . , λN2). Since QDQ∗ is a similarity trans-
formation of D, and the eigenvalues of D are clearly {λ1, . . . , λN2}, the eigenvalues of A∗A are
also {λ1, . . . , λN2}. Hence, A∗A has real eigenvalues, and provided non of them is zero, we then
have that A∗A is invertible, giving the following solution to our image inversion problem

f = (A∗A)−1A∗b. (24)

It turns out that if the columns of A are linearly independent, then A∗A is invertible [1].
The matrix (A∗A)−1A∗ is called the Moore-Penrose pseudoinverse of A, and it will give the

solution to equation 22 in the least squares sense [6, 8], that is

‖Af − b‖2 = min
x
‖Ax− b‖2. (25)

4 Algorithms for image reconstruction from spectral data

If we wanted to reconstruct an image at a resolution of 32 by 32 pixels, for example, we would
need a matrix A of at least dimensions 322 by 322. That is, we would need storage for 324 or
1,048,576 floating point numbers. In general, for an image resolution of N by N , we would need
O(N4) storage. This means that the algorithm we choose should be able to do its job without
storing A, or A∗A, explicitly.

4.1 The Singular Value Decomposition, insights and results

Recall from equation 25 that f is the solution of minimum norm to the least squares problem

min
x
‖Ax− b‖2. (26)

It can be proven that a matrix A of dimensions M by N2 can be written as A = UΣV ∗,
where U has dimensions M by M , V has dimensions N2 by N2, both U and V are unitary
matrices, and Σ is an M by N2 matrix having only non-zero elements in the main diagonal and
they are non-negative real numbers σ1 ≥ σ2 . . . ≥ σN2 ≥ 0, called the singular values of A [7].
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Observe that

A∗A = (UΣV ∗)∗UΣV ∗

= (V ΣU∗)UΣV ∗

= V Σ2V ∗. (27)

Since V is a unitary matrix, the right hand side of equation 27 is a similarity transformation,
therefore the eigenvalues of A∗A coincide with those of Σ2, which are exactly σ2

1 ≥ σ2
2 . . . ≥

σ2
N2 ≥ 0. Hence, A∗A is positive semidefinite.

Now, back to our minimization problem given by equation 26. If we call r = Ax− b, then

‖r‖2 = r∗r

= (U∗r)∗(U∗r)

= ‖U∗r‖2

= ‖U∗Ax−U∗b‖2

= ‖ΣV ∗x− c‖2, (28)

where cj = u∗jb, j = 1, . . . ,M and uj is the jth column of U . Now, by letting w = V ∗x,
equation 28 is equivalent to

‖r‖ =2 (σ1w1 − c1)2 + . . .+ (σnwn − cn)2 + c2n+1 + . . .+ c2m. (29)

Therefore, minimizing the norm of r is equivalent to minimizing the right hand side of 29.
This gives the following algorithm to solve equation 26.

1. Compute c = U∗b

2. Let p be the number of nonzero singular values of A

3. for j = 1, . . . , p

Set wj = cj/σj

end

4. The minimum norm solution is x = V (:, 1 : p)w
The norm of the residual is (cp+1 + . . .+ cm)1/2

Even though this algorithm would produce the right answer for our problem, it has the
following caveat. It requires the computation of the SVD decomposition of A and storage of U
and V , which can be very large and dense. Therefore, we need a low storage algorithm.

4.2 Conjugate gradient method, a low storage solution

We say that a set V = {vj ∈ Cn : j = 1, . . . , n} is conjugate with respect to an n by n Hermitian
positive definite matrix B, or B-conjugate, if

v∗jBvk = 0 if and only if j 6= k. (30)

Assume that we are given an A∗A-conjugate set V, and that we want to solve equation 23.
Consider f of the form

f =
n∑
j=1

αjvj , with vj ∈ V, (31)

then, substituting f into 23 and premultiplying by v∗k both sides of that equation we obtain
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v∗kA
∗Af = v∗kA

∗b

v∗kA
∗A

n∑
j=1

αjvj = v∗kA
∗b

n∑
j=1

αjv
∗
kA
∗Avj = v∗kA

∗b

αkv
∗
kA
∗Avk = v∗kA

∗b, (32)

from which

αk =
v∗kc

v∗kA
∗Avk

for k = 1, . . . , n, (33)

where we have set c = A∗b, and provided v∗kA
∗Avk is not zero. This means that if we obtain

an A∗A-conjugate set V we can solve with 33 our least squares problem. This is the theoretical
basis for the conjugate gradient algorithm. The algorithm basically minimizes (1/2)x∗Bx−x∗c,
where B is a Hermitian positive definite matrix. In our case, based on the results of section
4.1, we have that A∗A is at least positive semidefinite. We will eventually prove definiteness.
The algorithm has the advantage that we do not have to explicitly store A∗A, but be able
to compute A∗Ax for arbitrary vectors x. Consider equation 23, then the conjugate gradient
method algorithm translates into

1. Given x(0), form r(0) = b−A∗Ax(0), s(0) = r(0).

2. for k = 0, 1, . . . until convergence

Let z(k) = A∗As(k)

Let the step length be α(k) = (r(k)∗s(k))/(s(k)∗z(k))
Let x(k+1) = x(k) + α(k)s(k)

Update the negative gradient r(k+1) = r(k) − α(k)z(k)

Let β(k+1) = (r(k+1)∗r(k+1))/(r(k)∗r(k))
Let the new search direction be s(k+1) = r(k+1) + β(k+1)s(k)

5 Experiments and validation

To test our model and algorithms, we will select ten different high resolution black and white
images from which we will sample spectral data and try to reconstruct from that data the
original images at lower resolution.

The sampling will be on the unit square [0, 1) × [0, 1) in the spectral domain, and we will
use different sampling patterns: regular sampling, uniformly distributed random sampling, and
spiral sampling.

We will compare the reconstruction to the downsampled originals, and choose a metric that
measures how well the reconstruction performs.

We also have to complete some theoretical details such as verifying that A∗A is not singular.

6 Project management and timeline

The objective of this project is to implement the algorithms described in the previous sections,
carry out the experiments for their validation, and test performance on a database.

To achieve these goals, there are a series of tasks that we need to complete. We describe
them next, and assign a timeline for their completion. Also, we define the different deliverables
that will measure the progress done during this project.
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We had some details in the previous exposition that were left unresolved and that need to
be addressed:

• For the conjugate gradient method to work, we need to guarantee that A∗A is positive
definite. We need to research this fact.

• We need to be able to compute in an efficient way the Fourier transform of the high
resolution images that we’ll use to create the data to run our experiments on. We need to
study how to do this.

• We need to find a metric that measures how good our reconstruction is compared to the
downsampled versions of the high resolution images. We will use the `1 and `2 norms to
measure the reconstruction error.

After this theoretical and practical details are worked through, we have to implement the
conjugate gradient algorithm proposed. We will use MATLAB for that purpose, and if time
permits, port our code to C/C++. To this end we will:

• Show that the theoretical framework does work by writing code that can generate low
resolution reconstructions

• Implement code that can generate higher resolution reconstructions

• Write code to measure how good the reconstructions are compared to the originals

6.1 Milestones

• Need to select images to run experiments on

– Establish criteria that images must meet
– Select images based on those criteria

• Work theoretical aspects mentioned above (extra)

• Write code to import images using Matlab

• Write code to compute Fourier transform of an image at (σ, γ) in the spectral domain

– Write theory
– Matlab implementation

• Create data set

– Establish sample point sets

• Test theory with low resolution reconstruction using the SVD algorithm using Matlab

• Write conjugate gradient algorithm code for high resolution reconstructions in Matlab

• Validate the implementation

• Test on database for several densities of frequency sampling points

6.2 Deliverables

• Matlab code and documentation

• All theoretical work carried out to implement code

• Table and plot of results
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